Автор Тема: Найти угловой коэффициент прямой  (Прочитано 530 раз)

0 Пользователей и 1 Гость просматривают эту тему.

Оффлайн dexx123

  • Пользователь
  • Сообщений: 23
    • Просмотр профиля
Найти угловой коэффициент прямой
« : Сентябрь 12, 2015, 07:44:14 pm »
Найти \( k \) из условия, что прямая \( y=kx+2 \) удалена от начала координат на расстояние \( \sqrt{3} \).
Срочно нужно! Помогите!
 

Оффлайн Admin

  • Администратор
  • Сообщений: 4946
  • Поблагодарили: 1571 раз(а)
    • Просмотр профиля
Найти угловой коэффициент прямой
« Ответ #1 : Сентябрь 12, 2015, 08:18:32 pm »
Найдём нормирующий множитель: \( \large \mu=\frac{1}{-\sqrt{k^2+1}} \). Представим уравнение \( \large kx-y+2=0 \) в нормальной форме: \( \large -\frac{k}{\sqrt{k^2+1}}x+\frac{1}{\sqrt{k^2+1}}y-\frac{2}{\sqrt{k^2+1}}=0 \). Согласно условию задачи, \(  \large \frac{2}{\sqrt{k^2+1}}=\sqrt{3} \). Следовательно, \( \large 3k^2+3=4 \ \Leftrightarrow \ 3k^2=1 \ \Leftrightarrow \ k= \pm \frac{\sqrt{3}}{3} \).
 
Сказали спасибо: dexx123